科研动态
材料科学系俞燕蕾课题组提出了制备多功能线型液晶聚合物的新策略
发布时间:2023-04-26        浏览次数:1813

在智能材料中,液晶聚合物特定的分子排列和液晶相结构赋予了材料分子间的协同作用以及各向异性,极大地提高了材料的刺激响应能力,是实现多重刺激响应形变的理想材料。聚合后修饰法(Post-Polymerization Modification, PPM)旨在以温和的反应条件对具有反应活性的聚合物前驱体进行高效化学修饰功能改性,避免了功能性基团与聚合过程的相互影响,为多功能聚合物的制备提供巨大便利。利用PPM制备刺激响应形变液晶聚合物的方法已有报道,然而多用于后交联反应,未充分应用于多重响应形变液晶聚合物的制备。

近日,复旦大学材料科学系俞燕蕾教授团队从合成策略和分子设计的角度出发,首次结合开环易位聚合(Ring-Opening Metathesis Polymerization, ROMP)与PPM以制备多功能液晶聚合物(图1a)。通过ROMP可以得到高分子量反应性线型液晶聚合物前驱体PABPFP(图1b),使其无需交联即可展现出良好的力学强度以及光致形变能力。同时,借助PPM在前驱体反应性位点上精确引入所需功能基团,为响应性液晶聚合物的多功能化衍生提供便捷的制备途径。该团队利用这种通用型策略制备了可回收光湿双响应线型液晶聚合物(PABCOOH),并通过机械热拉伸法制备得到了具有良好液晶取向的薄膜材料(图1ef)。

1.a)光湿双响应液晶聚合物合成路线;(b-d)响应性液晶聚合物与其前驱体的分子量测定、核磁共振氟谱及热力学性质表征;(e)响应性液晶聚合物薄膜制备过程及取向机理展示;(f2D-XRD表征

该薄膜在紫外光照射下,表面的偶氮苯分子由trans异构体转变为cis异构体,使该薄膜沿着液晶基元排列方向弯曲,而cis异构体在可见光照射下可回复到trans异构体,使薄膜回复到平整状态。此外,聚合物薄膜中羧酸基团主要以氢键二聚体形式存在,当其在碱处理后,氢键网络被破坏并转化为吸湿性羧酸盐网络,当环境相对湿度增加后,薄膜可吸水膨胀并沿着垂直于液晶基元排列方向弯曲。

得益于该液晶聚合物材料的线型结构,作者可以对薄膜进行三维塑形与回收,他们通过折纸、裁剪等方法制备了仿生“海葵”三维执行器,展示了其在紫外光和湿度刺激下的各向异性形变行为,并彰显了这种材料良好的回收性。该策略为多重刺激响应材料分子结构的丰富化提供有力的支持,有助于多重响应功能、可控形变方向的仿生三维执行器的构筑,及其在智能软机器人等领域的潜在应用。

2.a)自然界中的海葵示意图;(b)仿生“海葵”三维执行器的制备过程及(c)在紫外光与湿度变化下的形变过程

相关研究成果以“A Facile Strategy for the Development of Recyclable Multifunctional Liquid Crystal Polymers via Post-Polymerization Modification and Ring-Opening Metathesis Polymerization”为题,并作为Hot Paper发表在Angew. Chem. Int. Ed. (DOI: 10.1002/anie.202300699)。复旦大学材料科学系赵欣硕士生和陈燕博士生为共同第一作者,韦嘉副教授和俞燕蕾教授为共同通讯作者。

  

文章链接:https://onlinelibrary.wiley.com/doi/10.1002/anie.202300699